a2 United States Patent

Peterson et al.

US009342256B2

US 9,342,256 B2
May 17, 2016

(10) Patent No.:
(45) Date of Patent:

(54) EPOCH BASED STORAGE MANAGEMENT (56) References Cited
FOR A STORAGE DEVICE
U.S. PATENT DOCUMENTS
(71) Applicant: Fusion-io, Inc., Salt Lake City, UT (US)
7,836,226 B2 11/2010 Flynn et al.
. . 2008/0222219 Al* 9/2008 Varadarajan 707/204
(72) Inventors: #nl‘lesTG | Petf g San Jos%gAU%JS)’ 2010/0049754 Al* 2/2010 Takaokaetal. 707/205
isha Talagala, Livermore, CA (US); 2010/0281214 Al 11/2010 Jernigan
Swaminathan Sundararaman, San 2011/0258391 Al 10/2011 Atkisson ef al.
Jose, CA (US); Sriram Subramanian, 2012/0054152 Al* 3/2012 Adkinsetal. ...c.o........... 707/623
San Jose, CA (US) 2012/0191664 Al* 7/2012 Wakrat GOGF 12/0246
707/684
(73) Assignee: SANDISK TECHNOLOGIES, INC., 2013/0024645 Al . 1/2013 Cheriton et al.
Plano, TX (US) 2013/0067138 Al* 3/2013 Schuette etal. 711/103
* cited by examiner
(*) Notice: Subject to any disclaimer, the term of this Y
patent is extended or adjusted under 35
U.S.C. 154(b) by 370 days. Primary Examiner — Reginald Bragdon
Assistant Examiner — Edward Wan
2
(21) Appl. No.: 13/831,448 (74) Attorney, Agent, or Firm — Kunzler Law Group, PC
(22) Filed: Mar. 14,2013
57 ABSTRACT
(65) Prior Publication Data
Techniques are disclosed relating to handling snapshot data
US 2014/0281307 Al Sep. 18, 2014 for a storage device. In one embodiment, a computing system
51) Int. CI maintains information that indicates the state of data associ-
Gh Gn 0;$F 3 06 (2006.01) ated with an application at a particular point in time. In this
GO6F 17/30 (200 6. o1) embodiment, the computing system assigns an epoch number
GO6F 11/14 (2006.01) to a current epoch, where the current epoch is an interval
’ between the particular point in time and a future point in time.
(52) US.CL P P P
cpPC GOGF 3/065 (2013.01); GOGF 3/0619 In this embodiment, the computing system writes, during the
(2013 01); GO6F 3/068;9 (2(’)13 01); GO6F current epoch, a block of data to the storage device. In this
11/1402 (2013’ 01); GOGF 1 7/30086.} (2(’)13 o1) embodiment, the writing the block of data includes storing the
D ’ h ber with the block of data.
(58) Field of Classification Search epochl ititber Wit the block o1 data

None

See application file for complete search history. 21 Claims, 13 Drawing Sheets

800

/

Maintain information that
indicates the state of data
associated with an
application at a particular
point in time
810

A 4

Assign an epoch number
to a current epoch
820

Y
During the current epoch,
write a block of data to
the storage device
including writing the
epoch number with the
block of data
830

US 9,342,256 B2

Sheet 1 of 13

May 17, 2016

U.S. Patent

} "Old

v
00}
WoIsAS
Bunnduwion

Orr
nin
10SS80044

1z
(shueg

cel
JaJjo.u00

0SL
8oI1n8(] 8bel01s

ori L

f

8zl 43 77T
den JoMId suonesijddy
4
WvH

U.S. Patent May 17, 2016 Sheet 2 of 13 US 9,342,256 B2

Snapshot N Snapshot N+1 Curr e(’gE‘jPOCh
210A 2108 210C
201 202 203 204 206205
2158
Range M 215C
2154 = = =
Block: 6 Block: & Block: 6
L] | |
FBlock 14 ' Block: 20 Block: 7
Current Data
220
206 202
203\ (205 204
Overlay 240
FIG. 2A
Initial 280

281
2 ;

N
(&s]
N

N
(o]
Co
N
[0%]
N

FIG. 2B

U.S. Patent May 17, 2016 Sheet 3 of 13 US 9,342,256 B2
Logical Address Space 302
Logical 310C
Block 310B
310A 2 310D
“—~ ’
i LA Y

Logical
Erase
Block
320A 3208 320C 320D

Y
Packet 360
360

Physical Address Space 304

FIG. 3A

)
360

U.S. Patent May 17, 2016 Sheet 4 of 13 US 9,342,256 B2

. Metadata
Storage Device
130 390
Storage Bank Storage Bank Storage Bank
134A 134B 134N

—_—— =7 ==+ —— -}
: LEB PEB 0 PEB 0 PEB 0
| 320 330A 3308 330N
W= == T T T/ T ———— MT -~ M————
| Logical | [["Physical Physical . Physical
II Page Page 0 Page 0 Page 0
I| 340 3504 ||| 350B 350N
| PO PO PO
|: 360A 3608 360N
I PT O P1 P1
I 360A 3608 360N
I : e :
W—=—=-H--=—=—=—HHI-HF =~ — .

"Ecc[1Pr o PN PN
| Chunk 360A 3608 360N

| 370 l
_:______::____-:'_.__".__:__.___"--____-_ _____

| .
|
I Page N Page N Page N
| 3504 350B 3508
| PO PO PO
: 360A 3608 360N
| P 1 P 1 P1
, 360A 3608 360N
| :
| :
, PN PN PN
| 360A 3608 360N
| I Il

U.S. Patent May 17, 2016 Sheet 5 of 13 US 9,342,256 B2

38\4 Log Structure
L 380
384 R
S \
N \ 340 '/'
Tail
384
Logical Head/
%Z%e Append
Point
382
«
e
’ T 382
" 382

FIG. 3C

US 9,342,256 B2

Sheet 6 of 13

May 17, 2016

U.S. Patent

v Old4 .
abeio}s woi-4/0 |
A
9cl J1enuQ
0cy 1ohe7 o/l
X
sossaippy [eoishyd -—v0or
01 40Ae7 jJuowobeuepy

viy

/Av\

depy piemioo

J

A

T B BN

907y
stsoquinN yood3g

L —~20p

S8ssaippy [eo1bo7]

US 9,342,256 B2

Sheet 7 of 13

G Old
D0GG ejepeon \ v/ g05S ejepeopy
DOFG stepuiod g0rS SJsouiod
DOES buiddeyy ssaippy 12oisAyd gocg buiddeyy ssaippy [801SAYd
D025 obuey ssappy (821607 | 5907 4oGUInN 4o0d3 | §02G obuey ssalppy (221607 |G90% 4oquinN yoody |
J0LG SPON g01G 8PON

May 17, 2016

U.S. Patent

V0SS ejepelop
V0BG SiojuIod
VOES buiddeyy ssalppy [eoisAld

V0LG 9PON

8cl
dew

US 9,342,256 B2

Sheet 8 of 13

May 17, 2016

U.S. Patent

¢¢9 8PON

8¢l
dewy

N

19 9PON

G019 L+N joysdeus,

V019 N joysdeus

US 9,342,256 B2

Sheet 9 of 13

May 17, 2016

U.S. Patent

Z "Old

o€l

8bel0)S WoIH/0 |
A

92T Jong

0Zv 18Ae7 O/l

SoSSoIppY [2ISAyd Y0¥

A

15 JoAe] Juswobeuey

/0\

depy piemioo

24

80/ —~ saessalppy 821607

A

JoAe7 joysdeus

0¢Z

A

A

|

|

_

|

“

210} 4 1\1“
sioquiny yood3g’

L~ 20F

$88SaIppYy (821607

U.S. Patent

800

’,)

May 17, 2016 Sheet 10 of 13

Maintain information that
indicates the state of data
associated with an
application at a particular
point in time
810

Y

Assign an epoch number
to a current epoch
820

y
During the current epoch,
write a block of data to
the storage device
including writing the
epoch number with the
block of data
830

FIG. 8A

840

')

Configure a storage
device such that the
storage device has a
logical address space that
is larger than a physical
address space of the
storage device
830

Y

Perform a first write
operation during a first
epoch using a first logical
address range within the
logical address space
860

Y

Perform a second write
operation during a
second, later epoch using
a second logical address
range within the logical
address space
870

FIG. 8B

US 9,342,256 B2

U.S. Patent May 17, 2016 Sheet 11 of 13 US 9,342,256 B2

Apparatus
900

Association Module
910

Storage Module
920

FIG. 9

U.S. Patent May 17, 2016 Sheet 12 of 13

US 9,342,256 B2

Apparatus
1000

Determination Means
1010

Translation Means
1020

Storage Means
1030

FIG. 10A

1030

’/'

1050

’/)

Receive write operation
and epoch number
1032

Access data structure
using logical address
1052

Y

Y

Produce logical address
of write operation based
on epoch number
1034

Generate physical
address based on
accessing the data
Structure
1054

FIG. 10B

FIG. 10C

U.S. Patent May 17, 2016 Sheet 13 of 13 US 9,342,256 B2

Storage
System
1100

’)

Client Client
System .. System
1120A 11208
Computing System
100

Storage Server Application
1110

A

Y

Storage Device
1130

FIG. 11

US 9,342,256 B2

1
EPOCH BASED STORAGE MANAGEMENT
FOR A STORAGE DEVICE

BACKGROUND

1. Technical Field

This disclosure relates generally to accessing data on a
physical recording medium, and more specifically to han-
dling snapshot information on such a medium.

2. Description of the Related Art

Modern storage systems often require various restore capa-
bilities for stored data. Such a restoration may be performed,
for example, to facilitate crash recovery in the event of power
loss, to recover a last known valid state in the event of data
corruption, etc. This functionality may be achieved by taking
“snapshots” of data for particular applications such that a
snapshot includes information indicating the current state of
data for the application at the time the snapshot is taken. For
example, taking the snapshot of a database application might
include copying the current values of data within the database
to an alternate storage.

In the context of flash-based storage, to improve the lon-
gevity of memory cells, modern storage systems may imple-
ment a log-structured storage to ensure that writes to cells are
more evenly distributed across the storage to produce better
wear leveling (as opposed to writing particular cells fre-
quently while other cells go unused). When storing data using
alog-structure storage, data may be written at an append point
that starts at an initial portion in the storage and advances
forward as writes are performed. A driver may map logical
addresses used by an application to physical locations on a
storage device where the data is actually stored, e.g., accord-
ing to a log-structured implementation.

SUMMARY

The present disclosure describes embodiments of tech-
niques for handling snapshot data for a storage device. These
techniques may allow for restoration of data and snapshot
data when data corruption occurs. These techniques may
allow for efficient storage of snapshot data by storing a delta
of information written during an epoch associated with each
snapshot.

In one embodiment, a computing system maintains infor-
mation that indicates the state of data associated with an
application at a particular point in time. In this embodiment,
the computing system assigns an epoch number to a current
epoch, where the current epoch is an interval between the
particular point in time and a future point in time. In this
embodiment, the computing system writes, during the current
epoch, a block of data to the storage device. In this embodi-
ment, the writing the block of data includes storing the epoch
number with the block of data.

In another embodiment, an apparatus is disclosed that
includes an association module and a storage module. In this
embodiment, the associate module is configured to associate
a logical address range for a storage device with an epoch
number. In this embodiment, the epoch number is associated
with write operations to the storage device during a particular
epoch. In this embodiment, the storage module is configured
to handle one or more storage operations associated with the
epoch number using the logical address range. For example,
write during an epoch may be associated with the epoch
number of the epoch. Read operations may be associated with
the current epoch or a particular snapshot.

In yet another embodiment, a non-transitory computer
readable medium has program instructions stored thereon.

10

35

40

45

50

65

2

The program instructions are executable by a computing sys-
tem to cause the computing system to perform operations.
The operations include configuring a storage device such that
the storage device has a logical address space that is larger
than a physical address space of the storage device. The
operations further include performing a first write operation
during a first epoch using a first logical address range within
the logical address space and performing a second write
operation during a second, later epoch using a second logical
address range within the logical address space.

In yet another embodiment, an apparatus is disclosed that
includes first, second, and third means. The first means is for
determining a logical address for a write operation based on a
current epoch number. The second means is for translating the
logical address to a physical address on a storage device. The
third means is for storing the current epoch number on the
storage device.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram illustrating one embodiment of a
computing system that supports storage snapshots.

FIG. 2A is a diagram illustrating exemplary snapshot data.

FIG. 2B is a diagram illustrating an exemplary data struc-
ture for maintaining relationships between snapshots.

FIGS. 3A-3C are block diagrams illustrating embodiments
of'logical and physical address spaces.

FIG. 4 is a block diagram illustrating one embodiment of a
driver for the storage device.

FIG. 5 is a block diagram illustrating one embodiment of a
map data structure.

FIG. 6 is a block diagram illustrating another embodiment
of'a map data structure.

FIG. 7 is a block diagram illustrating another embodiment
of a driver for the storage device.

FIGS. 8A and 8B are flow diagrams illustrating embodi-
ments of methods.

FIG. 9 is a block diagram illustrating one embodiment of
an apparatus having an association module and a storage
module.

FIG. 10A is a block diagram illustrating another embodi-
ment of an apparatus having a determination means, transla-
tion means, and storage means.

FIGS. 10B and 10C are flow diagrams illustrating embodi-
ments of algorithms implemented by a determination means
and a translation means.

FIG. 11 is a block diagram illustrating one embodiment of
a storage system.

This specification includes references to “one embodi-
ment” or “an embodiment.” The appearances of the phrases
“in one embodiment” or “in an embodiment” do not neces-
sarily refer to the same embodiment. Particular features,
structures, or characteristics may be combined in any suitable
manner consistent with this disclosure.

This disclosure also includes and references the accompa-
nying drawings. In the drawings, similar symbols typically
identify similar components, unless context dictates other-
wise. The illustrative embodiments described in the detailed
description, drawings, and claims are not meant to be limit-
ing. Other embodiments may be utilized, and other changes
may be made to these exemplary embodiments, without
departing from the scope of the disclosure.

Various units, circuits, or other components in this disclo-
sure may be described or claimed as “configured to” perform
a task or tasks. In such contexts, “configured to” is used to
connote structure by indicating that the units/circuits/compo-
nents include structure (e.g., circuitry) that performs those

US 9,342,256 B2

3

task or tasks during operation. As such, the unit/circuit/com-
ponent can be said to be configured to perform the task even
when the specified unit/circuit/component is not currently
operational (e.g., is not on). The units/circuits/components
used with the “configured to” language include hardware—
for example, circuits, memory storing program instructions
executable to implement the operation, etc. Additionally,
“configured to” can include generic structure (e.g., generic
circuitry) that is manipulated by software and/or firmware
(e.g., an FPGA or a general-purpose processor executing
software) to operate in a manner that is capable of performing
the task(s) at issue. Reciting that a unit/circuit/component is
“configured to” perform one or more tasks is expressly
intended not to invoke 35 U.S.C. §112, sixth paragraph, for
that unit/circuit/component.

Asused herein, the term “based on” is used to describe one
or more factors that affect a determination. This term does not
foreclose additional factors that may affect a determination.
That is, a determination may be solely based on those factors
orbased, at least in part, on those factors. Consider the phrase
“determine A based on B.” While in this case, B is a factor that
affects the determination of A, such a phrase does not fore-
close the determination of A from also being based on C. In
other instances, A may be determined based solely on B.

DETAILED DESCRIPTION

The disclosure initially describes, with reference to FIGS.
1 and 2A-2B, a computing system that handles snapshot data
for a storage system. To facilitate this description, logical and
physical address spaces associated with the storage device are
described with reference to FIGS. 3A-3C. Drivers and map
structures usable to handle snapshot data within the storage
device are described with reference to FIGS. 4-7. Further
embodiments of techniques for handling snapshot data are
described in further detail with reference to FIGS. 8-11.

Turning now to FIG. 1, a block diagram of a computing
system 100 that supports snapshots is depicted. Computing
system 100 may be any suitable type of computing device
such as a server, laptop, desktop, a mobile device, etc. In some
embodiments, computing system 100 may include multiple
computing devices working together. For example, in one
embodiment, computing system 100 may be multiple servers
coupled together at a data center configured to store data on
behalf of multiple clients, such as the storage system dis-
cussed below in conjunction with FIG. 11. In the illustrated
embodiment, computing system 100 includes a processor
unit 110, random access memory (RAM) 120, and storage
device 130 coupled together via an interconnect 140. As
shown, RAM 120 may include program instructions for one
or more applications 122. RAM may include a driver 126 for
storage device 130, which, in turn, may include a controller
132 and one or more storage banks 134. RAM 120 may also
include a map 128.

In various embodiments, driver 126 is described as having
various functionality. This functionality may be implemented
in software, hardware or a combination thereof. Such func-
tionality may be implemented within an application 122, in
one embodiment. In another embodiment, this functionality
may be implemented by software stored within a memory of
controller 132 and executed by a processor of controller 132.
In still another embodiment, controller 132 may include dedi-
cated circuitry to implement functionality of driver 126. In
sum, the depiction of driver 126 as being implemented in
RAM 120 should not be seen as limiting, but rather as a

40

45

4

depiction of an exemplary embodiment. Similarly, map 128
may be stored in driver 126, controller 132, and/or any other
appropriate location.

Storage device 130 is representative of any physical
medium upon which data can be recorded. As used herein, the
term “recorded” refers broadly to the process of an electronic
computing device storing, writing or otherwise transferring
one or more data values on to some physical recording
medium for subsequent use. Accordingly, a “physical record-
ing medium” is used herein to refer to any medium on which
data may be recorded by an electronic computing device.
Further, the terms “storage” and “memory” are used herein to
be synonymous with “physical recording medium.” Given
this broad definition, the designations memory (when refer-
ring to RAM 120) and storage (when referring to storage
device 130) in FIG. 1 and elsewhere in this disclosure may
refer to volatile and/or non-volatile media. Such media may
also be referred to herein as “memory,” and portions of such
media may be referred to as “blocks,” “cells,” “storage
blocks,” “memory blocks,” etc. Collectively, a group of these
blocks may be referred to as a “storage array,” “memory
array,” etc.

References in this disclosure to “accessing” data in storage
device 130 or “storage requests” to storage device 130 refer to
any type of transaction, including writing data to storage
device 130 and/or reading data from storage device 130, as
well as, TRIM operations, maintenance accesses, discovery
accesses, load and store operations under memory semantics,
and the like. Further, given the broad definitions of “storage”
and “memory” referred to above, these accesses may be appli-
cable to a storage device that has non-volatile memory and/or
volatile components.

In some embodiments, storage device 130 may be imple-
mented such that it includes non-volatile memory. Accord-
ingly, in such an embodiment, storage banks 134 may include
non-volatile storage devices such as hard disk drives (e.g.,
Integrated Drive Electronics (IDE) drives, Small Computer
System Interface (SCSI) drives, Serial Attached SCSI (SAS)
drives, Serial AT Attachment (SATA) drives, etc.), tape
drives, writable optical drives (e.g., CD drives, DVD drives,
Blu-Ray drives, etc.) etc.

In some embodiments, storage device 130 may be imple-
mented such that it includes non-volatile solid-state memory.
Accordingly, in such an embodiment, storage banks 134 may
include any suitable type of solid-state storage media includ-
ing, but not limited to, NAND flash memory, NOR flash
memory, nano RAM (“NRAM”), magneto-resistive RAM
(“MRAM”), phase change RAM (“PRAM”), Racetrack
memory, Memristor memory, nanocrystal wire-based
memory, silicon-oxide based sub-10 nanometer process
memory, graphene memory, Silicon-Oxide-Nitride-Oxide-
Silicon (“SONOS”), Resistive random-access memory
(“RRAM”), programmable metallization cell (“PMC”), con-
ductive-bridging RAM (“CBRAM”), etc. In some embodi-
ments, storage banks 134 may include multiple, different
types of solid-state storage media.

In other embodiments, storage device 130 may be imple-
mented such that it includes volatile memory. Storage banks
134 may thus correspond to any suitable volatile memory
including, but not limited to such as RAM, dynamic RAM
(DRAM), static RAM (SRAM), synchronous dynamic RAM
(SDRAM), etc. Although shown independently of processor
unit 110, in some embodiments, storage device 130 may
correspond to memory within processor unit 110 such as one
or more cache levels (e.g., .1, .2, .3, etc.) within processor
unit 110.

US 9,342,256 B2

5

In sum, various functionality will be described herein per-
taining to storage device 130. Such functionality may be
applicable to any suitable form of memory including both
non-volatile and volatile forms. Thus, while particular
embodiments of driver 126 are described herein within the
context of non-volatile solid-state memory arrays, driver 126
may also be applicable to other recording media such as
volatile memories and other types of non-volatile memories,
particularly those that include a reclamation process.

Controller 132, in one embodiment, is configured to man-
age operation of storage device 130. Accordingly, controller
132 may facilitate performance of read operations at specified
addresses (e.g., “physical addresses” as discussed below)
including selecting the appropriate banks 134 and accessing
the data within the appropriate cells within those banks Con-
troller 132 may facilitate performance of write operations
including programming of particular cells. Controller 132
may also perform preparation operations to permit subse-
quent writes to storage device 130 such as, in one embodi-
ment, erasing blocks of cells for subsequent reuse. (The cycle
of programming and erasing a block of cells may be referred
to as a “PE cycle.”) In some embodiments, controller 132
implements separate read and write data pipelines to perform
read and write operations in parallel. In one embodiment,
controller 132 is also configured to communicate with driver
126 (discussed below) over interconnect 140. For example, in
some embodiments, controller 132 communicates informa-
tion for read and write operations via direct memory access
(DMA) transactions coordinated by a DMA controller.
Accordingly, controller 132 may support any suitable inter-
connect type such as a peripheral component interconnect
(PCI), PCI express (PCl-e), serial advanced technology
attachment (“serial ATA” or “SATA”), parallel ATA
(“PATA”), small computer system interface (“SCSI”), IEEE
1394 (“FireWire”), Fiber Channel, universal serial bus
(“USB”), etc. In some embodiments, controller 132 may also
perform other operations such as error checking, data com-
pression, encryption and decryption, packet assembly and
disassembly, etc.

Invarious embodiments, storage device 130 is organized as
a log-structured storage. As used herein, the term “log struc-
ture” refers to an arrangement of data on a storage medium in
which an append point is used to determine where data is
stored; the append point is advanced sequentially through an
“address space” as data is stored. A log-structured storage is
simply a storage device that is organized using a log structure.
Theuse of'a log structure also connotes that metadata is stored
in conjunction with the data in order to permit the storage
device 130 to be restored to a previous state. Such a restora-
tion may be performed, for example, to facilitate crash recov-
ery in the event of power loss, to recover a last known valid
state in the event of data corruption, etc. As used herein, the
term “address space” refers to a range of addresses that can be
used to specify data within a storage device. As will be
described below, a log-structured storage may have both logi-
cal and physical address spaces. The term “logical address
space” refers to an address space as perceived by higher-level
processes even though this address space may not be repre-
sentative of how data is actually organized on the physical
media of storage device 130 or the actual number of physical
address locations actually in use, reserved, or allocated to a
higher-level process. In contrast, the term “physical address
space” refers to the address space used by lower-level pro-
cesses and may be indicative of how data is organized on the
physical media of storage device 130 and the actual number
ofphysical address locations in use by a higher-level process.
Embodiments of logical and physical address spaces are dis-

10

15

20

25

30

35

40

45

50

55

60

65

6

cussed in further detail in conjunction with FIGS. 3A and 3B,
respectively. One embodiment of a log structure is discussed
in conjunction with FIG. 3C.

In various embodiments, using a log structure may permit
multiple instances of a set of data to be present in storage
device 130 as the data is written, modified, and rewritten to
storage. As part of tracking data in a physical address space,
older instances of stored data (i.e., those instances that are not
the current instance) may be indicated as invalid. For
example, in one embodiment, when a value is to be updated,
the value may be written at a storage block specified by the
current append point (rather than at the location where the
value was previously stored). In response to the write being
successfully performed, any previously stored instances of
that value may be marked as invalid. As used herein, the term
“invalid” refers to data that no longer needs to be stored by the
system (e.g., because a newer copy of the data exists). Simi-
larly, the term “invalidating” refers to the marking of data as
invalid (e.g., storing a record in a data structure) or to the
storing of an instance of data when a previous instance of the
data existed in storage device 130, the storing making the
previous instance invalid.

Map 128, in one embodiment, is used to map (i.e., trans-
late) logical addresses to physical addresses within storage
device 130. Accordingly, as data becomes moved and invali-
dated, it may reside in different physical addresses on storage
device 130 over time. Through the use of map 128, however,
an application may be able access a most recent set of data by
specifying the same logical address (e.g., LBA) even though
two or more versions of the data may reside in different
physical addresses. Map 128 may be implemented using any
suitable data structure. According, in one embodiment, map
128 is a binary-tree data structure. In others embodiments,
map 128 may be an array, a linked list, a hash table, etc. In
some embodiments, map 128 may be implemented using
multiple data structures. Embodiments of map 128 are
described in further detail below in conjunction with FIGS. 5
and 6.

Applications 122, in one embodiment, include program
instructions that are executable by processor unit 110. As will
be described below, applications 122 may utilize various
hardware of computing system such as processor unit 110,
RAM 120, and storage device 130. An operating system or
hypervisor may allocate portions of storage device 130 and/or
portions of RAM 120 to applications 122.

Driver 126, in one embodiment, is executable to permit
applications 122 to interact with storage device 130. Accord-
ingly, driver 126 may receive requests to perform read and
write operations at specified logical block addresses and may
issue corresponding commands to controller 132 to imple-
ment those operations. In some embodiments, driver 126
manages garbage collection for storage device 130 to reclaim
storage blocks with invalid data. As used herein, “reclaiming”
a storage block or “reclamation” of a storage block refers to
preparing the storage block for reuse (i.e., so that the storage
block can store new data). In the case of flash media, recla-
mation may include copying valid data out of the storage
block and erasing the block. In some embodiments, to facili-
tate performance of read and write operations, driver 126 also
maps logical addresses (e.g., LBAs) to corresponding physi-
cal addresses (in other embodiments, mapping logical
addresses to physical addresses may be performed elsewhere,
such as at controller 132). Accordingly, driver 126 may also
manage map 128 including adding and removing translations
from map 128 as data is manipulated on storage device 130.

In some embodiments, driver 126 is configured to create
and handle snapshots for data stored on storage device 130.

US 9,342,256 B2

7

Exemplary snapshot data is described below with reference to
FIG. 2A. For example, driver 126 may provide a separate
logical address range and epoch number for each snapshot.
Data stored for each snapshot, in some embodiments, may
include or indicate a delta of information written since a
previous snapshot. Driver 126 may handle snapshots and
epoch numbers for storage requests and translate logical
addresses from applications 122 to physical addresses of
storage device 130 based on the epoch numbers. The snapshot
capability may or may not be transparent to applications 122.
For example, in some embodiments, applications 122 may be
configured to provide epoch numbers with particular storage
requests. In other embodiments, applications 122 may pro-
vide storage requests without any knowledge of snapshots or
epoch numbers.

In various embodiments, driver 126 presents a logical
address space to applications 122. In one embodiment, the
size of the logical address space may be equivalent to the size
of the physical address space on storage device 130. For
example, if storage device 130 has a 1.2 TB capacity addres-
sable using a 32-bit physical address space, driver 126 may
present a 32-bit logical address space to the operating system.
In another embodiment, driver 126 presents a logical address
space that is larger than the physical address space of storage
device 130. In such an embodiment, applications 122 may be
described as being “thinly provisioned” as they are given
more resources (e.g., storage capacity) than actually exists—
thus, applications 122 cannot collectively consume the entire
logical address space (without adding additional capacity) as
this would overload the storage capacity of storage device
130. Still further, in other embodiments, driver 126 may pro-
vide a logical address space that is significantly larger than the
physical address space of a storage device such that the logi-
cal address space is a “sparse address space.” (For the pur-
poses of this disclosure, a sparse address space is any logical
address space that is at least 10% larger than the physical
address space of a storage device.) For example, in one
embodiment, driver 126 may present a 48-bit sparse address
space relative to a 32-bit physical address space. In such an
embodiment, a given application 122 may consume consid-
erably less than its total allocated LBA range such that con-
siderable unused portions of logical address space may exist
between one application 122°s stored data and another appli-
cation 122’s data. Driver 126 may determine the size of the
logical address space to be presented based on any suitable
criteria.

In various embodiments, allocating ranges of a larger logi-
cal address space may be advantageous because it reduces the
possibility of collisions within the logical address space (e.g.,
applications 122 inadvertently accessing the same LBA).
Allocated ranges may also be static, continuous, and non-
overlapping to reduce the possibility of collisions. Still fur-
ther, through the usage of map 128, driver 126 may reduce the
possibility of collisions within the physical address space
without relying on an operating system to prevent potential
collisions.

Further, sparse addressing may allow for a larger number
of snapshots relative to the actual available physical storage
space. For example, less than the entire address range of a
snapshot will typically be written during each epoch, so a
physical address space may be smaller than the logical
address space allocated to snapshots.

Turning now to FIG. 2A, a diagram illustrating exemplary
snapshot data is shown. In the illustrated embodiment, snap-
shots 210A-C are each associated with a respective one of
logical address ranges 215A-C, which are each used for write
operations during a particular epoch. As used herein, the term

15

40

45

50

55

8

“epoch” refers to an interval between two events in time.
Events may include snapshot events (e.g., creation, deletion,
or merging of a snapshot), system events (e.g., power on,
restart), particular points in time, etc. Epochs are often
bounded by two consecutive snapshots. However, an “initial
epoch” ends when a first snapshot occurs for a particular
application, and may not be initially bounded by a snapshot
(e.g., the initial epoch may start with an empty drive). Simi-
larly, a “current epoch” occurs while performing storage
requests after a previous snapshot, but is bounded by a present
point in time rather than a snapshot until a subsequent snap-
shot occurs. Thus, storage requests to a storage range that
implements snapshots occur during a particular epoch, which
may be an initial epoch, a current epoch, or an epoch that is
bounded by snapshots. Epochs may or may not be non-over-
lapping. For example, two epochs may overlap in the context
where multiple child snapshots are created based on the same
parent snapshot.

Further, as used herein, the term “snapshot” refers to the
state of data associated with an application at a particular
point in time. The term “snapshot data” refers to information
that is stored to record and indicate a snapshot. Snapshot data
may include metadata, mapping data, data itself, etc. in order
to indicate the state of a storage device at a given time. For
example, if snapshot data is generated for a particular appli-
cation at time T1, the snapshot data can later be used at time
T2 to recover data from time T1, even some of the data from
T1 has been overwritten by the application at time T2. An
initial snapshot may refer to an empty drive, which may be a
logical address range with no valid data. Further, the phrase
“creating a snapshot” refers to instantiating snapshot data.
For example, creating a snapshot may include recording
which data of the snapshot was written during a preceding
epoch, pointing to data written during previous epochs, and/
or allocating a new logical address range for data written
during a current epoch that follows creation of the snapshot.

Driver 126, in various embodiments, is configured to
assign a logical address range 215 to each epoch. In one
embodiment, the logical address range for an initial epoch
(not shown) is presented to an application. In this embodi-
ment, the application may continue to use the logical address
range of the initial epoch and may be unaware of other logical
address ranges. Each logical address range may be located at
a particular offset from the logical address range initially
allocated to an application, and logical addresses from the
application may be shifted based on epoch numbers in order
to use the appropriate logical address range. In some embodi-
ments, each logical address range 215 is the same size as the
address space that is allocated to a particular application. An
application may be unaware of the different logical address
ranges 215, and may read and write from a single address
range. Storage requests from the application may be directed
to a particular logical address range 215 based on an epoch
with which the logical address ranges 215 are associated.

In the illustrated example, data blocks 201 and 202 were
written at blocks 6 and 14 of logical address range 215A
during an epoch that preceded creation of snapshot N. Simi-
larly, blocks 203 and 204 were written at blocks 5 and 20 of
logical address range 115B during an epoch between creation
of'snapshot N and creation snapshot N+1, and blocks 205 and
206 were written at blocks 6 and 7 of logical address range
215C during the current epoch that began after snapshot N+1
was taken. Driver 126, in various embodiments, is configured
to translate logical addresses in logical address ranges 215 to
physical addresses on storage device 130. As described below
with reference to FIG. 3A, physical blocks corresponding to

US 9,342,256 B2

9

the logical addresses in logical address ranges 215 may be
located at various different locations in a physical address
space.

Thus in certain embodiments, for a given storage request,
driver 126 may perform two translations: (1) a translation
from an application’s address to a logical address for the
appropriate epoch and (2) a translation from the logical
address for the epoch to a physical address.

In the illustrated embodiment, current data 220 is a con-
ceptual overlay of data indicated by previous snapshot data.
In this embodiment, snapshot data for a given snapshot indi-
cates writes that occurred since the previous snapshot. To read
current data, in one embodiment, driver 126 is configured to
check alogical address range associated with a current epoch
(logical address range 215C in this example). If no translation
exists for a block in the logical address range of the current
epoch, (e.g., because the block has not been written during the
current epoch), driver 126 is configured to examine the logi-
cal address ranges of one or more ancestor snapshots to find
the data. This would occur when the block has not been
written during the current epoch, for example. For example,
when searching for the data at block 20, driver 126 would stop
when detecting block 204 in snapshot N+1. Note that in the
example of FIG. 2A, block 206 “overwrites” block 201 at
block 6 from the point of view of an application. Thus, block
206 would be read in response to a request for data from block
7 from current data and block 201 would be read in response
to a request for data from block 7 from snapshot N+1. For a
block at block 3, for example, driver 126 may find the data in
a snapshot previous to snapshot N, because the data does not
have a translation for any of the snapshots shown.

In various embodiments, driver 126 is configured to assign
an epoch number to each epoch. The epoch number may be
used to identify the logical address range associated with an
epoch. Driver 126 may handle shifting or adjusting addresses
from an application to the appropriate logical address range
based on these epoch numbers. Driver 126 may implement a
counter to generate epoch numbers. The counter may wrap
when it reaches a greatest representable value, making the
number of snapshots available dependent on the number of
bits used for the counter. In some embodiments, epoch num-
ber zero is associated with an initial snapshot which refers to
an all-empty drive.

In some embodiments, driver 126 is configured to store an
epoch number on storage device 130 at one or more locations
that are associated with blocks written during the particular
epoch. In one embodiment, as described below with reference
to FIG. 3B, driver 126 is configured to store epoch numbers in
metadata for each block (and/or for larger or smaller storage
structures associated with each block). Each block may be a
packet (described below with reference to FIG. 3B) or a larger
data block. Driver 126 may also store epoch information in
map 128 and/or other data structures for translating logical
addresses to physical addresses.

Driver 126, in one embodiment, is configured to create
snapshots for applications at regular intervals. Alternatively
or additionally, driver 126 may be configured to create snap-
shots based on requests by an application or operating system.
The data included in a snapshot may be an entire logical
address range available to an application, or some portion
thereof. In some embodiments, an application may read from
a particular epoch by providing an epoch number to driver
126. In other embodiments, an application does not have
access to epoch numbers and only sees data associated with
overlay 240 unless a restoration of a previous snapshot
occurs. In some embodiments, mapping of logical address

30

40

45

55

10

ranges 215 to physical addresses may persist for all snapshots
that have not been deleted, allowing for easy rollback to a
previous snapshot.

Driver 126 may delete snapshot data by issuing a TRIM
command for the logical address range associated with the
snapshot. Performing a TRIM command may include updat-
ing or removing nodes in map 128 associated with the logical
address range and marking associated data stored on the
storage device as invalid. A garbage collector may eventually
re-use the physical locations associated with invalid data for
new data. Thus, the data may be marked as invalid, but may
not be deleted immediately. In some embodiments, driver 126
may wait to deleting data for a snapshot with multiple chil-
dren until all blocks in its logical address range that have
translations to physical addresses have been overwritten by
the child snapshots, e.g., in order to avoid duplicating data.

Turning now to FIG. 2B, one embodiment of a data struc-
ture 280 for maintaining snapshot data is depicted. In the
illustrated embodiment, nodes 281-288 in data structure 280
are each associated with a snapshot and contain references to
respective parent and child snapshots. Each node may include
information associated with the logical address range
assigned to a snapshot, such as the bounds of the range, an
offset associated with the range, or a pointer to information
about the range, e.g., in map 128. Each node may also include
information about what blocks in the logical address range
are valid. A logical address may be described as “valid” with
respectto a snapshot when it is translatable to a corresponding
physical address at which the data is stored, e.g., because the
data was written during an epoch associated with the snap-
shot. In some embodiments, this validity corresponds to
whether there is currently a physical address mapped to the
logical address. In one embodiment, a particular logical
address is implicitly invalid if there is no node in map 128
associated with the logical address.

Node 281, in the illustrated embodiment, corresponds to an
initial snapshot, which may represent an empty drive. Node
281’s descendants include nodes for snapshot N, snapshot
N+1 and the current epoch (CE). Node M 288, in the illus-
trated embodiment, is another child node of node N+1 and is
included to show that a snapshot may have multiple child
snapshots. In the illustrated embodiment, each node includes
references to both parent and child nodes (if existing), but in
other embodiments, data structure 280 may include refer-
ences in only one direction. In some embodiments, all snap-
shots for a particular data range share an oldest ancestor
snapshot (e.g., initial snapshot 281 of FIG. 2B). Speaking
generally, a “child snapshot” records data during an epoch
immediately following creation of a “parent snapshot.” Such
parent/child relationships may be maintained using data
structure 280 and/or some other structure.

Finding current data for a read operation may involve tra-
versal of multiple nodes in the tree. For example, if a particu-
lar block is not valid in nodes 284 or 286, a read may occur
from snapshot N 282. In some embodiments, driver 126 is
configured to collapse the tree in order to improve efficiency.
For example, driver 126 may merge parent snapshot data into
its child by writing any current data from the parent snapshot
forward and associating it with the child snapshot’s epoch
number. Merging snapshots may involve resolving conflicts
between snapshots (e.g., when two snapshots include differ-
ent data for the same block) using older or younger data in
various configurations. In one embodiment, data from a
younger snapshot is used when there is a conflict during
merging. If a parent snapshot has multiple children, driver
126 may delete one or more of the children before performing
such a merge, e.g., in order to prevent duplication of data.

US 9,342,256 B2

11

Driver 126 may be configured to add a node to data structure
280 each time a snapshot is created and remove nodes from
data structure 280 when snapshots are deleted. Driver 126
may balance data structure 280 in order to optimize access
times.

Various optimizations may be implemented for performing
read operations using data structure 280 and/or map 128.
Speaking generally, driver 126 provides two keys (a logical
address and an epoch number) to access a desired physical
address on storage device 130. Thus, various optimizations
used for databases that are accessed with multiple keys may
be applied to driver 126.

In one embodiment, driver 126 is configured to maintain a
unique forward map for the current epoch. This unique for-
ward map may map logical address ranges to the epoch num-
ber in which they were written. For example, for the current
epoch, this unique forward map may indicate, for each block
in the logical address range, which snapshot holds valid data
for the block. This implementation may improve access times
by preventing traversals through multiple nodes to find cur-
rent data.

In another embodiment, driver 126 may include reference
data in map 128 that points to an epoch that contains valid data
for a given block. For example, if data for a particular epoch
does not contain a translation for a particular block, map 128
would include a reference to the epoch that contains the
current data for the block. This implementation may reduce
traversals of the map to two lookups at most but may increase
the size of map 128.

In the illustrated embodiment, data structure 280 is a tree,
but in other embodiments data structure 280 may be stored as
an array, a linked list, a hash table, etc. Driver 126 may store
data structure 280. In other embodiments, driver 126 may
handle snapshot data without data structure 280, e.g., by
using epoch numbers to access and update map 128. In some
embodiments, driver 126 includes additional data structures
(not shown) for optimizing storage requests associated with
snapshots. Data structure 280 and map 128 may be separate,
may be combined, and/or may reference each other, in various
embodiments.

Turning now to FIG. 3A, an exemplary mapping of a logi-
cal address space 302 to a physical address space 304 is
depicted. In one embodiment, logical address space 302 rep-
resents the organization of data as perceived by higher-level
processes such as applications 122. In one embodiment,
physical address space 304 represents the organization of data
on the physical media.

Logical address space 302, in one embodiment, is divided
into logical addresses corresponding to respective logical
blocks 310A-310D (also referred to as sectors). In some
embodiments, the logical addresses are LBAs (in other
embodiments, the logical addresses may correspond to some
other form of logical identifiers). In one embodiment, sectors/
blocks 310 represent the smallest block of data associated
with a given logical address. As but one example, a block 310
may be approximately 512 bytes in size (while logical erase
blocks and logical pages discussed below may be approxi-
mately 40 MB and 8 kB, respectively).

Physical address space 304, in one embodiment, is divided
into physical addresses corresponding to the arrangement of
data on the physical recoding media. As will be discussed in
further detail with respect to FIG. 3B, in one embodiment, the
content of logical blocks 310 may be stored as packets 360
within logical erase blocks 320. As discussed with respect to
FIG. 3C, in various embodiments, physical address space 304
may be organized as a log structure, in which write operations
may be performed at only one or more append points.

10

15

20

25

30

35

40

45

50

55

60

65

12

Turning now to FIG. 3B, a block diagram of storage blocks
within storage device 130 is depicted. In the illustrated
embodiment, storage device 130 is organized into logical
erase blocks (LEBs) 320 that include multiple physical erase
blocks (PEBs) 330, which are located in separate storage
banks 134. A logical erase block 320 is further divided into
multiple logical pages 340 (not to be confused with virtual
memory pages) that, in turn, include multiple physical pages
350. Pages 350 include multiple packets 360, which may be
grouped into ECC chunks 370.

As used herein, the term “erase block” refers broadly to a
logical erase block or a physical erase block. In one embodi-
ment, a physical erase block 330 represent the smallest stor-
age block with a given bank 134 that can be erased at a given
time (e.g., due to the wiring of cells on the die). In one
embodiment, logical erase blocks 320 represent the smallest
block erasable by controller 132 in response to receiving an
erase command. In such an embodiment, when controller 132
receives an erase command specifying a particular logical
erase block 320, controller 132 may erase each physical erase
block 330 within the block 320 simultaneously. It is noted that
physical erase blocks 330 within a given logical erase block
320 (e.g., blocks 330A and 330B) may be considered as
contiguous in physical address space 304 even though they
reside in separate banks 134. Thus, the term “contiguous”
may be applicable not only to data stored within the same
physical medium, but also to data stored within separate
media.

In one embodiment, a physical page 350 represents the
smallest storage block within a given bank 134 that can be
written to at a given time. In one embodiment, a logical page
340 is the smallest writable storage block supported by con-
troller 132. (In one embodiment, controller 132 may include
a buffer configured to store up to a logical page worth of data;
upon filling the buffer, controller 132 may write the contents
of'the buffer to a single logical page simultaneously.) In some
instances, dividing a logical page 340 across multiple banks
134 may result in faster access times for a set of data when
multiple banks 134 are accessed in parallel.

In one embodiment, a packet 360 represents the smallest
storage block within a given bank 134 that can be read at a
given time. In one embodiment, an ECC chunk 370 is the
smallest storage block readable by controller 132. In some
embodiments, packets 360 may be slightly larger than logical
blocks 310 as they may include the contents of a logical block
310 (or multiple blocks 310 in some instances) as well as a
packet header.

In some embodiments, driver 126 may associate metadata
390 with one or more of storage blocks 320-370. As used
herein, the term “metadata” refers to system data usable to
facilitate operation of solid-state storage device 130; meta-
data stands in contrast to, for example, data produced by an
applications (i.e., “application data”) or forms of data that
would be considered by an operating system as “user data.”
For example, in one embodiment, a logical erase block 320
may include metadata specifying, without limitation, usage
statistics (e.g., the number of program erase cycles performed
on that block 320), health statistics (e.g., a value indicative of
how often corrupted data has been read from that block 320),
security or access control parameters, sequence information
(e.g., a sequence indicator), a persistent metadata flag (e.g.,
indicating inclusion in an atomic storage operation), a trans-
action identifier, or the like. In one embodiment, the header
within a packet 360 may include packet metadata such as one
or more [.LBAs associated with the contained data, the packet
size, linkages to other packets, error correction checksums,
etc. In various embodiments, driver 126 may use this infor-

US 9,342,256 B2

13

mation, along with other forms of metadata, to manage opera-
tion of storage device 130. For example, driver 126 might use
this information to facilitate performance of read and write
operations, recover storage device 130 to a previous state
(including, for example, reconstruction of various data struc-
tures used by driver and/or replaying a sequence of storage
operations performed on storage device 130), etc.

In one embodiment, driver 126 is configured to store an
epoch number in metadata 390 for each packet that is part of
a snapshot range. In this embodiment, the epoch number
corresponds to an epoch during which the packet was written.
In other embodiments, epoch numbers may be stored on
storage device 130 and associated with other granularities.
For example, an epoch number may be stored with each
logical page visible to an application. As further examples, an
epoch number may be written with each ECC chunk, each
LEB, or any of various appropriate storage unit sizes. Meta-
data 390 may also include the logical address associated with
each write operation. Driver 126 may use metadata 390 to
determine when snapshot data should be merged or deleted,
to reconstruct data structures (e.g., data structures that main-
tain relationships between snapshots), and restore storage
device 130 to a previous state associated with a previous
snapshot, e.g., when such data structures have been cor-
rupted.

Turning now to FIG. 3C, a block diagram of log structure
380 within physical address space 304 is depicted. As shown,
in various embodiments, data is stored sequentially at an
append point 382 (also referred to as the “head”) that starts an
initial logical page 340. As additional data is stored, append
point 382 advances to subsequent pages 340 in log structure
380. Eventually, after storing enough data, the append point
382 reaches the “last” page 340 in storage device 130, at
which point the append point 382 wraps back to the initial
page 340. Thus, log structure 380 is depicted as a loop/cycle.
As more data is stored, the number of available pages 340
(shown as unshaded pages 340) decreases and the number of
used pages 340 (shown as shaded pages 340) increases. As
discussed above, in order to reuse these pages 340 (i.e., make
them available to receive further writes), in one embodiment,
driver 126 performs erase operations on logical erase blocks
320. In one embodiment, a tail 384 is maintained to identify
the oldest page 340 still in use within structure 380 (pages
other than the one located at the tail are considered to be
younger than the tail). When the logical erase block 320 with
the oldest page 340 is eventually erased, tail 384 is advanced
forward to the next oldest page 340 in use at the end of log
structure 380.

In general, data that is modified less frequently than other
data in storage device 130 will migrate towards tail 384 (such
data may be described as having a “colder temperature” or
simply as “cold data”). On the other hand, data that is modi-
fied more frequently (described as having a “hotter tempera-
ture” or as “hot” data) will typically be located closer to head
382. Thus, valid data located in LEB 320A is likely “colder”
than data in LEB 320B.

It is noted that, in other embodiments, storage device 130
may be organized in a non-log-structured format. As used
herein, the term “strict log structure” refers to a structure in
which write operations may be performed at only one append
point, and are not allowed to “fill in” at locations behind the
append point.

Turning now to FIG. 4, a block diagram illustrates one
embodiment of driver 126. As noted above, in one embodi-
ment, driver 126 is executable to enable applications 122 to

35

40

45

50

14

interact with storage device 130. In the illustrated embodi-
ment, driver 126 includes a management layer 410 and an
input/output (I/O) layer 420.

Management layer 410, in one embodiment, handles
higher-level block-related operations for driver 126. Accord-
ingly, in various embodiments, management layer 410 tracks
the mapping of logical addresses 402 to physical address 404,
and performs translations for addresses 402 received from
higher-level processes such as those of applications 122 and/
or an OS. In some embodiments, management layer 410 also
performs garbage collection, e.g. using a groomer. In some
embodiments, management layer 410 maintains various
forms of metadata in one or more data structures located
within RAM 120 such as forward map 414, program erase
(PE) statistics, health statistics, etc. (In other embodiments,
data structures associated with driver 126 may be maintained
elsewhere in system 100 such as within storage device 130.)
In one embodiment, driver 126 periodically stores copies of
these data structures to storage device 130 so that they can be
reconstructed in the event of a crash.

Forward map 414, in one embodiment, is a forward map-
ping data structure usable to map a logical address space to a
physical address. Forward map corresponds, in some
embodiments, to map 128. In some embodiments, forward
map 414 may include metadata in addition to metadata used
to facilitate mapping such as invalidity information. Although
described as “forward” map, map 414 may also be used to
perform a reverse mapping of a physical address to a logical
address. As will be described in conjunction with FIGS. 5-6,
in one embodiment, forward map 414 is implemented as an
extended-range b-tree data structure. In other embodiments,
forward map 414 may be implemented using other data struc-
tures such as arrays, hash tables, other forms of trees, etc. In
some embodiments, forward map 414 may also be imple-
mented as multiple data structures such as a tree with pointers
into an array.

In the illustrated embodiment, forward map 414 is also
configured to receive epoch numbers 406. In some embodi-
ments, epoch numbers 404 are encoded in logical addresses
402. For example, the epoch numbers 406 may be included in
the higher-order bits of logical addresses 402. As another
example, epoch numbers 404 may be encoded using a hash
function or any of various appropriate algorithms for encod-
ing an epoch number in a range of addresses. In other embodi-
ments, epoch numbers 406 are provided separately from logi-
cal addresses 402. Epoch numbers may be generated by driver
126 itself (e.g., using the current epoch) or may be received
from an application (e.g., in order to access data from a
previous snapshot). In some embodiments, forward map 414
is configured to generate physical addresses based on both
logical addresses 402 and epoch numbers 406.

1/0 layer 420, in one embodiment, handles lower-level
interfacing operations with controller 132. Accordingly, layer
420 may receive a write request or a read request and the
physical address 404 for that request; layer 420 may then
issue the appropriate commands to controller 132 to cause
storage device 130 to fulfill that request. In some embodi-
ments, I/O layer 420 may prepare data for DMA transactions
and initialize a DMA controller to conduct the transactions.

Turning now to FIG. 5, a block diagram of map 128 is
depicted. In illustrated embodiment, map 128 is an extended-
range b-tree that includes multiple nodes 510A-C. As shown,
each node 510 includes a logical address range 520, a physi-
cal address mapping 530, one or more pointers 540, addi-
tional metadata 550, and an epoch number 406.

In one embodiment, driver 126 is configured to allocate a
new node in map 128 when a snapshot is created and the

US 9,342,256 B2

15

current epoch begins. The node may include a logical address
range that points to the entire logical address range associated
with the current epoch. As data is written during the current
epoch, the node may be divided up into multiple other nodes
for smaller logical address portions within the range for the
current epoch (see FIG. 6, for example).

Logical address range 520, in one embodiment, is the range
of'logical addresses (e.g., LBAs) that are mapped using infor-
mation within a given node 510. Accordingly, logical address
range 520A specifies that physical address mapping 530A
pertains to LBAs 50-100, for example. If a logical address
does not “hit” in a node 510 (i.e., does not fall within a range
520 of a node such as range 520A in root node 510A), then
map 128 is traversed to examine ranges 520 in one or more
leaf nodes such as nodes 510B or 510C. In one embodiment,
map 128 includes a node 510 for each range of logical
addresses that have been mapped to a corresponding range of
physical addresses, but does not include nodes 510 corre-
sponding to unmapped ranges. Thus, in such an embodiment,
if a given LBA is unused, unallocated, and/or unwritten, a
corresponding node 510 does not exist for that LBA in map
128. On the other hand, if an L.BA has been written to, map
128 includes a node 510 specifying range 520 that includes
the LBA. As such, nodes 510 may be added and/or modified
when data is written to storage device 130. In such an embodi-
ment, map 128 is also a sparse data structure, meaning that
map 128 does not include mappings for an entire logical
address space. Accordingly, in some embodiments, logical
address space 302 may be significantly larger than physical
address space 304.

Physical address mapping 530, in one embodiment, is the
mapped physical addresses for a given range 520. In one
embodiment, a given physical address is a composite a bank
identifier for a storage bank 134, a PEB identifier for a PEB
330, a physical page identifier for a page 350, and a packet
identifier for a packet 360; however in other embodiments, a
physical address may be organized differently (e.g., a com-
posite of LEB, logical-page, and ECC-chuck identifiers). In
one embodiment, physical address mapping 530 is specified
as a range of physical addresses. In another embodiment,
physical address mapping 530 is a base address that is com-
bined with an offset determined from the logical address. In
other embodiments, mapping 530 may be specified difter-
ently.

Pointers 540, in one embodiment, identify leaf nodes 510
for a given node 510. In some embodiments, map 128 is
organized such that a left pointer identifies a node 510 thathas
a lower address range 520 than the present node 510 and a
right pointer may identity a node 510 having a higher address
range 520. For example, if node 510A corresponds to the
logical address range 50-100, node 510B may correspond to
the range 0-50 and node 510C may correspond to the range
100-150. In some embodiments, map 128 may also be peri-
odically balanced to give it a logarithmic access time.

Metadata 550, in one embodiment, is additional metadata
that may not be used in mapping a logical address to physical
address such as validity information and packet size. In one
embodiment, validity information may identity whether par-
ticular locations (e.g., erase blocks, pages, or packets) store
valid or invalid data. In some embodiments, metadata 550
may also include TRIM notes indicative of data that was
invalidated in response to TRIM commands (in other embodi-
ments, TRIM notes may be stored in a separate data structure
within RAM 120, or on storage device 130). In some embodi-
ments, storage device 130 may support variable packet sizes;
in such an embodiment, metadata 550 may specify the size
packets used for a given logical address range 520. In some

30

40

45

16

embodiments, metadata 550 may also include other informa-
tion such as age information, snapshot data, usage informa-
tion (e.g., whether particular logical addresses are associated
with hot or cold data), etc.

Epoch number 406, in one embodiment is the epoch num-
ber associated with logical address range 520 (which may be
all or a portion of a logical address range 215, for example).
In one embodiment, epoch number 560 is encoded in the
upper bits of logical addresses. In another embodiment,
epoch number 406 is included in metadata 550. In still other
embodiments, nodes in map 128 may not include epoch num-
bers and epoch numbers may be handled by other modules of
driver 126.

In some embodiments, driver 126 provides both an epoch
number and a logical address to map 128. As mentioned
above, the epoch number may be encoded in the address, in
some embodiments. Map 128, in the illustrated embodiment,
is configured to produce a physical address of storage device
130 in response to the received epoch number and logical
address.

In one embodiment, driver 126 is configured to determine
whether the snapshot data associated with the epoch number
contains a translation to a physical address for the logical
address before accessing map 128 (e.g., using data structure
280). In this embodiment, driver 126 traverses map 128 to
find the logical address and uses physical address mapping
530 to obtain the associated physical address. In another
embodiment, driver 126 is configured to access map 128
before it has determined whether the snapshot data associated
with the epoch number contains valid data for the logical
address. In this embodiment, driver 126 may determine that
the snapshot data associated with the epoch number does not
contain valid data at the logical address based on metadata
440. In this situation, driver 126 may be configured to re-
traverse map 128 using a new logical address and/or new
epoch number in order to access a node associated with a
parent snapshot until a snapshot with valid data at the desired
location is found.

Turning now to FIG. 6, another embodiment of map 128 is
depicted. In the illustrated embodiment, epoch numbers are
encoded in logical addresses (e.g., in the upper bits). In this
embodiment, driver 126 may not include a separate data
structure 280 for maintaining parent-child relationships
between snapshots. In the illustrated embodiment, map 128
includes nodes 612-622 which are allocated among two snap-
shots 610.

In the illustrated embodiment, nodes 612-622 are associ-
ated with snapshots based on bits of their address ranges (e.g.,
in higher-order bits of each address). Thus, a given snapshot
may be associated multiple nodes in map 128 that encode the
epoch number of the snapshot in their logical address range
520.

Consider a situation in which snapshot N+1 610B is a child
of snapshot N 610A. Driver 126 accesses map 128 using a
logical address that encodes an epoch number. If the node in
the current snapshot N+1 associated with the logical address
(e.g., node 618) does not contain a valid entry, driver 126, in
one embodiment, is configured to apply an offset to the logi-
cal address. In this embodiment, driver 126 would apply the
offset such that a new logical address would include snapshot
N’s epoch number and re-traverse map 128 in order to deter-
mine whether parent snapshot N included valid data for the
new logical address.

Turning now to FIG. 7, a block diagram of driver 126 is
depicted. In this embodiment, in contrast to the embodiments
of FIGS. 4-6, driver 126 does not provide epoch numbers to a
forward map. Driver 126 may be otherwise configured simi-

US 9,342,256 B2

17
larly to the embodiment described above with reference to
FIG. 4, with the addition of snapshot module 730.

Snapshot layer 730, in one embodiment, generates a new
logical address 708 based on a logical address 402 and an
epoch number 406. For example, snapshot layer 730 may be
configured to apply offsets to logical addresses 402 based on
epoch numbers 406 in order to generate new logical addresses
708. In one embodiment, layer 730 may use data structure 280
to translate epoch number 406 and logical address 402 to a
corresponding logical address 708 usable to index into map
414. In other embodiments, snapshot layer 730 includes other
data structures, such as a unique forward map for the current
epoch that maps logical address ranges to the epoch number
in which they were written. As discussed above, epoch num-
bers 406 may be generated by driver 126, an application 122,
and/or some other module. In the illustrated embodiment,
forward map 414 may not include epoch numbers 406.

Turning now to FIG. 8A, a method 800 is depicted. Method
800 is one embodiment of a method that may be performed by
an apparatus such as computing system 100 or storage device
130. Accordingly, in one embodiment, the apparatus may
execute program instructions of a driver such as driver 126 to
perform method 800.

Instep 810, acomputing system maintains information that
indicates the state of data associated with an application at a
particular point in time. The computer system may maintain
this information based on a periodic snapshot schedule or at
the request of an application, for example. Maintaining the
information may include assigning a logical address range to
a current epoch that follows the particular point in time.

In step 820, the computing system assigns an epoch num-
ber to a current epoch. The current epoch may be a time
interval between the particular point in time and a later point
in time. The computing system may assign the epoch number
using a counter and may assign epoch numbers sequentially.
In one embodiment, the epoch number is encoded in one or
more address bits (e.g., the higher-order bits) of a logical
address range associated with the current epoch.

In step 830, the computing system writes a block of data to
the storage device during the current epoch. In this embodi-
ment, writing the block of data includes writing the epoch
number to the storage device with the set of data. The com-
puting system may write the epoch number in metadata
included with a packet of data. The epoch number written to
the storage device may be used to reconstruct snapshot infor-
mation in the event of data corruption. The epoch number
written to the storage device may also be used to determine
when a snapshot should be deleted and/or merged into a child
snapshot, for example.

Turning now to FIG. 8B, a flow diagram of a method 840 is
depicted. Method 840 is one embodiment of a method that
may be performed by an apparatus such as computing system
100 or storage device 130. Accordingly, in one embodiment,
the apparatus may execute program instructions of a driver
such as driver 126 to perform method 840.

In step 850, a storage device is configured such that the
storage device has a logical address space that is larger than a
physical address space of the storage device. This sparse
addressing may allow computing system 100 to allocate more
space for snapshots than actually exists on a storage device.

In step 860, a first write operation is performed during a
first epoch using a first logical address range within the logi-
cal address space.

In step 870, a second write operation is performed during a
second, later epoch using a second logical address range
within the logical address space. The first and second write

10

15

20

25

30

35

40

45

50

55

60

65

18

operations may target the same location from the point of
view or an application or may target different locations.

Turning now to FIG. 9, a block diagram of an apparatus 900
that includes modules is depicted. As used herein, the term
“module” refers to circuitry configured to perform operations
or a memory having program instructions stored therein that
are executable by one or more processors to perform opera-
tions. Accordingly, a module may be implemented as a hard-
ware circuit implemented in a variety of ways. The hardware
circuit may include, for example, custom very-large-scale
integration (VLSI) circuits or gate arrays, off-the-shelf semi-
conductors such as logic chips, transistors, or other discrete
components. A module may also be implemented in program-
mable hardware devices such as field programmable gate
arrays, programmable array logic, programmable logic
devices, or the like. A module may also be any suitable form
of non-transitory computer readable media storing program
instructions executable to perform specified operations.
Apparatus 900 may include modules to implement any of the
functionality described herein. For example, in the illustrated
embodiment, apparatus 900 includes an association module
910 and a storage module 920.

Association module 910, in one embodiment, is configured
to associate a logical address range for a storage device with
an epoch number, where the epoch number is associated with
writes to the storage device during a particular epoch. The
logical address range may be part of a logical address space in
a sparse addressing configuration. In some embodiments,
storage module 1120 may implement functionality described
with respect to driver 126.

Storage module 920, in one embodiment, is configured to
handle one or more storage operations associated with the
epoch number using the logical address range. For example,
in one embodiment, storage module 920 uses addresses in the
logical address range for write operations and maps the
addresses to physical locations on storage device 130. Stor-
age module 920 may direct read operations to the logical
address range based on determining that the read operations
are associated with the epoch number. Storage module 920
may direct read operations to other logical address ranges
associated with one or more ancestor snapshots in response to
determining that an block within the logical address range
targeted by the read operation is not valid in the current
snapshot data. In some embodiments, storage module 920
may implement functionality described with respect to driver
126, storage device 130, or a combination thereof.

In some embodiments, association module 910 and/or stor-
age module 920 are within a controller such as controller 132.
In another embodiment, modules 910 and/or 920 may be
located within a memory such as memory 120. In sum, the
modules of apparatus 900 may be implemented in any suit-
able manner to perform functionality described herein. Appa-
ratus 900 may also correspond to any suitable structure hav-
ing the functionality of modules 910-920. In one
embodiment, apparatus 900 is a computing system that
includes (or is coupled to) a storage such as storage device
130. In another embodiment, apparatus 900 is a card includ-
ing a controller (such as controller 132) and one or more
storage elements (such as storage banks 134). In yet another
embodiment, apparatus 900 is a computing system including
a memory system that stores modules 910 and/or 920.

Turning now to FIG. 10A, a block diagram of an apparatus
1000 that includes a determination means 1010, a translation
means 1020, and a storage means 1030 is depicted. Apparatus
1000 may correspond to any suitable structure having the
functionality of determination means 1010, translation means
1020, and storage means 1030. For example, apparatus 1000

US 9,342,256 B2

19

may be any suitable type of computing device such as a
server, laptop, desktop, a mobile device, etc. In some embodi-
ments, apparatus 1000 may include multiple computing
devices working together. In some embodiments, apparatus
1000 is a card including a controller (such as controller 132)
and one or more storage elements (such as storage banks
134).

In various embodiments, determination means 1010 may
implement any of the functionality described herein with
respect to driver 126. Accordingly, in one embodiment, deter-
mination means 1010 determines a logical address for a write
operation based on a current epoch number. For example, in
one embodiment, determination means 1010 applies an offset
to an address of the write operation based on the epoch num-
ber to determine the logical address. In one embodiment,
determination means is configured to determine the logical
address by encoding the epoch number in a logical address.
For example, the epoch number may be encoded in the upper
bits of the logical address. In some embodiments, determina-
tion means 1010 may also implement functionality other than
that described in conjunction with driver 126.

In various embodiments, translation means 1020 may
implement any of the functionality described herein with
respect to driver 126. Accordingly, in one embodiment, trans-
lation means translates the logical address determined by
determination means 1010 to a physical address or location
on a storage device. For example, on one embodiment, trans-
lation means traverses map 128 in order to determine a physi-
cal address mapping 530 for the logical address. In some
embodiments, determination means 1010 may also imple-
ment functionality other than that described in conjunction
with driver 126.

Determination means 1010 and translation means 1020
may correspond to any suitable structures. In one embodi-
ment, determination means 1010 and/or translation means
1020 are hardware circuits configured to perform operations
(e.g., controller 132). The hardware circuits may include, for
example, custom very-large-scale integration (VLSI) circuits
or gate arrays, oft-the-shelf semiconductors such as logic
chips, transistors, or other discrete components. Means 1010
and/or 1020 may also be implemented in programmable hard-
ware devices such as field programmable gate arrays, pro-
grammable array logic, programmable logic devices, or the
like. In another embodiment, presentation means 1010 and/or
1020 includes a memory having program instructions stored
therein (e.g., RAM 120) that are executable by one or more
processors (e.g., processor unit 110) to implement an algo-
rithm.

In one embodiment, determination means 1010 imple-
ments the algorithm discussed with respect to FIG. 10B. In
some embodiments, translation means 1020 implements the
algorithm discussed with respect to FIG. 10C. In some
embodiments, determination means 1010 and/or translation
means 1020 correspond to association module 910. Accord-
ingly, the phrases “means for determining a logical address
for a write operation based a current epoch number” and
“means for translating the logical address to a physical
address” refer to any of the structures listed above as well as
their corresponding equivalents.

In various embodiments, storage means 1030 may imple-
ment any of the functionality described herein with storage
device 130. Accordingly, in one embodiment, storage means
1030 is for storing the epoch number on the storage device.
Storage means 1030 may store the epoch number at the same
physical location as a target of the write operation or may
store the epoch number at another location that is associated
with the target of the write operation. Storage means 1030

10

15

20

25

30

35

40

45

55

60

65

20

may correspond to any suitable structure such as those dis-
cussed above with respect to storage device 130 (e.g., one or
more banks 134, computing system 100, storage system 200,
etc.). Accordingly, the phrase “means for storing the current
epoch number on the storage device” refers to any of the
structures listed above as well as their corresponding equiva-
lents.

Turning now to FIG. 10B, a flow diagram illustrating an
algorithm 1030 is depicted. Algorithm 1030 is one embodi-
ment of an algorithm implemented by determination means
1010. In the illustrated embodiment, algorithm 1030
includes, at step 1032, receiving a write operation and an
epoch number. Algorithm 1030 further includes, at step 1034,
producing a logical address for the write operation based on
the epoch number. The logical address may be produced by
applying an offset to a logical address, by looking up the
logical address in a data structure, and so on.

Turning now to FIG. 10C, a flow diagram illustrating an
algorithm 1050 is depicted. Algorithm 1050 is one embodi-
ment of an algorithm implemented by translation means
1020. In the illustrated embodiment, algorithm 1050
includes, at step 1052, accessing a data structure using a
logical address. For example, translation means 1020 may
access map 128 and reading a physical address mapping.
Algorithm 1050 further includes, at step 1054, generating a
physical address based on accessing the data structure. The
physical address may be produced based on a log implemen-
tation.

Turning now to FIG. 11, a block diagram of a storage
system 1100 including computing system 100 is depicted. As
discussed above, computing system 100 may include appli-
cations 122 that operate on data stored in storage device 130.
In the illustrated embodiment, computing system 100
executes a storage server application 1110 to enable client
systems 1120A and 1120B to access and store data in storage
device 1130 via network 1230. For example, in one embodi-
ment, storage system 1100 may be associated within an enter-
prise environment in which server application 1110 distrib-
utes enterprise data from storage device 1130 to clients 1120.
In some embodiments, clients 1120 may execute other server
applications such as web servers, mail servers, virtual private
network (VPN) servers, etc. to further distribute data to other
computing systems. Accordingly, in some embodiments,
storage server application 1110 may implement various net-
work attached storage (NAS) protocols such as the file trans-
fer protocol (FTP), network file system (NFS) protocol,
server message block (SMB) protocol, Apple file protocol
(AFP), etc. In some embodiments, computing system 100
may be one of several computing systems 100 configured to
implement a storage area network (SAN).

Although specific embodiments have been described
above, these embodiments are not intended to limit the scope
of the present disclosure, even where only a single embodi-
ment is described with respect to a particular feature.
Examples of features provided in the disclosure are intended
to be illustrative rather than restrictive unless stated other-
wise. The above description is intended to cover such alter-
natives, modifications, and equivalents as would be apparent
to a person skilled in the art having the benefit of this disclo-
sure.

The scope of the present disclosure includes any feature or
combination of features disclosed herein (either explicitly or
implicitly), or any generalization thereof, whether or not it
mitigates any or all of the problems addressed herein. Accord-
ingly, new claims may be formulated during prosecution of
this application (or an application claiming priority thereto)
to any such combination of features. In particular, with ref-

US 9,342,256 B2

21

erence to the appended claims, features from dependent
claims may be combined with those of the independent
claims and features from respective independent claims may
be combined in any appropriate manner and not merely in the
specific combinations enumerated in the appended claims.

What is claimed is:

1. A method, comprising:

maintaining, by a computing system, information that indi-

cates the state of data associated with an application at a
particular point in time;

assigning, by the computing system, an epoch number to a

current epoch, wherein the current epoch is an interval
between the particular point in time and a future point in
time;

writing, by the computing system during the current epoch,

a block of data to the storage device using a logical
address, wherein the writing includes storing the epoch
number in the same page as the block of data and
wherein one or more bits of the logical address encode
the epoch number.

2. The method of claim 1, further comprising:

associating, by the computing system, a logical address

range with the epoch number;

translating, by the computing system, an address of a stor-

age request from the application during the current
epoch to a logical address within the logical address
range; and

storing, by the computing system, the logical address with

the block of data.

3. The method of claim 2, further comprising:

the computing system providing a logical address space for

a storage device on which the block of data is stored,
wherein the logical address space is larger than a physi-
cal address space of the storage device, wherein the
logical address range is part of the logical address space.

4. The method of claim 1, wherein a size of the block of
data is a smallest addressable unit for a storage device to
which the block is written.

5. The method of claim 1, wherein the information includes
snapshot data for a snapshot that shares a common ancestor
snapshot with one or more other snapshots.

6. The method of claim 1, further comprising:

servicing a read request during the current epoch by pro-

viding data written to a storage device during a previous
epoch.

7. The method of claim 1, further comprising:

performing a storage request that is associated with the

epoch number by:

determining an entry in a forward mapping structure
based on the epoch number; and

translating a logical address of the storage request to a
physical address of a storage device using the entry.

8. The method of claim 1, further comprising:

receiving a storage request and an epoch number associ-

ated with the storage request; and

applying an offset to an address of the storage request

based on the epoch number.

9. The method of claim 1, further comprising:

merging, after an end of the current epoch, the information

with other information that indicates the state of data at
the beginning of a later epoch, wherein the merging
includes associating data written during the current
epoch with an epoch number of the later epoch.

10. The method of claim 1, further comprising:

reconstructing a data structure that indicates parent-child

relationships between one or more snapshots based on
the epoch number stored with the block of data.

10

15

25

40

60

22
11. An apparatus, comprising:
an association module configured to associate a logical
address range for a storage device with an epoch num-
ber, wherein the epoch number is associated with write
operations to the storage device during a particular
epoch; and

a storage module configured to service one or more storage

operations associated with the epoch number using the
logical address range, wherein one or more bits of logi-
cal addresses in the logical address range encode the
epoch number of the particular epoch,

wherein at least a portion of the association module and

storage module comprise one or more of a hardware
circuit and program instructions stored on one or more
non-transitory computer readable media.

12. The apparatus of claim 11, wherein the storage module
is further configured to:

perform a write operation that includes writing a block of

data to the storage device including storing the epoch
number on the storage device in the same erase block as
the block of data.
13. The apparatus of claim 11, wherein the storage module
is further configured to:
perform a read operation using a different logical address
range associated with an epoch number of a previous
epoch in response to determining that the read operation
is for data written during the previous epoch; and

translate a logical address within the different address
range to a physical address of the storage device to
perform the read operation.

14. The apparatus of claim 11, wherein the storage module
is further configured to:

perform a write operation to a logical address in the logical

address range; and

indicate that the logical address is associated with valid

data for the particular epoch.

15. The apparatus of claim 11, wherein the storage module
is further configured to:

delete data associated with the particular epoch by issuing

a trim command for the logical address range.

16. A non-transitory computer readable medium having
program instructions stored thereon, wherein the program
instructions are executable by a computing system to cause
the computing system to perform operations comprising:

configuring a storage device such that the storage device

has a logical address space that is larger than a physical
address space of the storage device;

performing a first write operation during a first epoch using

a first logical address range within the logical address
space, wherein one or more bits of logical addresses in
the first logical address range encode a first epoch num-
ber; and

performing a second write operation during a second, later

epoch using a second logical address range within the
logical address space, wherein one or more bits of logi-
cal addresses in the second logical address range encode
a second epoch number.

17. The non-transitory computer-readable storage medium
of claim 16,

wherein the performing the first write operation during the

first epoch includes storing an epoch number associated
with the first epoch and a first logical address on the
storage device at a location associated with the write
operation, wherein the first logical address is within the
first logical address range.

18. The non-transitory computer-readable storage medium
of claim 16, wherein the operations further comprise:

US 9,342,256 B2
23

applying an offset to an address of a storage request based
on an epoch number provided with the storage request,
wherein applying the offset provides a new logical
address.

19. The non-transitory computer-readable storage medium 5

of claim 16, wherein the operations further comprise:

receiving a read request during the second epoch;

determining that a logical address for the read request in the
second logical address range does not have a valid trans-
lation to a physical address; and 10

in response to the determining, servicing the read request
using data from a physical location mapped to a logical
address in the first address range.

20. The non-transitory computer-readable storage medium

of claim 16, wherein the operations further comprise: 15

handling storage requests to the storage device using a
strict log structure.

21. An apparatus, comprising:

a first means for determining a logical address for a write
operation based a current epoch number, wherein one or 20
more bits of the logical address encode the current epoch
number;

a second means for translating the logical address to a
physical address on a storage device; and

a third means for storing the current epoch number on the 25
storage device, wherein storing the current epoch num-
ber comprises storing the current epoch number at the
same physical location as a target of the write operation.

#* #* #* #* #*

